

Department of Electronics & Telecommunication Engineering - DBMS

1

Dr. D. Y. Patil Institute of Technology, Pimpri, Pune

Department of Electronics & Telecommunication Engineering

Academic Year 2022-23 - Semester 7

TE

Subject – DBMS

EXPERIMENT NO. - 1

TITLE:

Study of Open Source Relational Databases : MySQL

AIM:

Study of Open Source Relational Databases : MySQL

THEORY:

MySQL is a Relational Management Database System (RDBMS), and ships with no GUI tools to

administer MySQL databases or manage data contained within the databases. Users may use the

included Command line tools, or use MySQL "front-ends", desktop software and web applications

that create and manage MySQL databases, build database structures, back up data, inspect status,

and work with data records. The official set of MySQL front-end tools, MySQL workbench is

actively developed by Oracle, and is freely available for use.

Client server system has one or more client process and one or more server processes, and a client

process can send a query to any one server process. Clients are responsible for user-interface issues,

and servers manages data and execute transaction .Thus, a client process could run on a personal

computer and send queries to a server to a server running on a mainframe

Commands for installation:

➢ Sudo apt-get update

➢ Sudo apt-get install mysql-server

➢ Mysql_secure_installation

➢ Sudo mysql –u root –p

➢ Enter Ubuntu Passward and Mysql Passward (root)

Steps For creating client server connectivity:

 To connecting client and server in a network we have to follows the following steps :

Server side Commands:

1] > sudo -i

 It is used to open file my.cnf

Department of Electronics & Telecommunication Engineering - DBMS

2

2] $ nano /etc/mysql/my.cnf

 In this step we have to search #bind_address command and after finding this command

comment that command then used following options

ctrl v : It is used to move next page.

ctrl o : It is used to save the changes.

ctrl x : It is used to exit from file

3] $ sudo service mySql restart;

4] $ mySql -u root -p;

 It is used for login into mysql. then it is asked for the password. Enter the appropriate

password.

5] mySql> grant all privileges on *.* to root@<client_IP> identified by "mysql" with grant

option;

Client side Commands:

 1] > mySql -h<server_IP> -u root -p;

 This commands is used to login into mysql database then enter the correct password.

2] mySql>create user <username>@ '%' ;

 This command used for client for cereating the llogin and password.

 Example:

 mySql>create TEComp@ '%';

where,

 % is used for any computer which are in network can access server data.

and if not then insted of % we can also pass the IP address for particular client.

3] mySql> grant all on *.* to TEComp@'%' ;

 Exit

4] To connecting to the server used the following command:

 $ mySql -h <server_IP> -u TEComp -p;

 After that enter the user created password

 In this by following server client connectivity steps, we can eassily connect the client and

server.

Database Creation commands

SQL> Show Databases;

Department of Electronics & Telecommunication Engineering - DBMS

3

SQL> create database Bank;

SQL> use Bank;

Components of SQL:

1) DDL (Data Definition Language)

 -This SQL syntax is used to create, modify and delete database structures.DDL syntax

cannot be applied to the manipulation of business data.DDL is almost always used by the database

administrator, a database schema implementer or an application developer. Every DDL command

implicitly issues a COMMIT making permanent all changes in the database.

Examples:

• CREATE: Create objects in database schema.

• ALTER: Alters the structure of objects that exist within the database schema.

• DROP: Drops objects that exist within database schema.

• TRUNCATE: Removes all records from a table, including all space allocated for the

records.

• COMMENT: Adds comments, generally used for proper documentation of a database

schema.

2)DML(Data Manipulation Language)

 -It is the SQL syntax that allows manipulating data within database tables.

Examples: INSERT, UPDATE, DELETE.

3)DCL(Data Control Language)

 -It controls access to the database and table data. Occasionally DCL statements are

grouped with DML statements.

 Examples:

 COMMIT,SAVEPOINT,ROLLBACK,SET TRANSACTION

• The commands used in MySQL are:

1) CREATE :

 The CREATE command is used to create a database or create a table in a particular

database.

i) FOR CREATING A DATABASE :

Syntax:

 create database database_name; //for creating a database

Example:

 create database Student_info //Student_info database is created

ii)FOR CREATINGA TABLE:

The table creation command requires:

Name of the table

Names of fields

Definitions for each field

Syntax:

Department of Electronics & Telecommunication Engineering - DBMS

4

CREATE TABLE table_name (column_name1 column_type, column_name2 column_type,........);

Example:

create table Student(Roll_no tinyint PRIMARY KEY,Fname varchar(20) NOT NULL,Lname

varchar(20),Mob_no char(10));

2)ALTER:MySQLALTER command is used to change a name of your table, any table field or if

you want to add or delete an existing column in a table.

Syntax:

i)DROP- Used to delete a particular column.

Syntax: mysql> ALTER TABLE table_name DROP i; //i is the row you want to delete.

ii)ADD-Used to add a particular column to an existing table.

Syntax:mysql> ALTER TABLE table_name ADD i int;

iii)CHANGE- Used to change a column's definition, use MODIFY or CHANGE clause along

with ALTER command. After the CHANGE keyword, you name the column you want to change,

then specify the new definition, which includes the new name

Syntax:

For example, to change column c from CHAR(1) to CHAR(10), do this:

mysql> ALTER TABLE table_name MODIFY c CHAR(10);

mysql> ALTER TABLE testalter_tbl CHANGE i j BIGINT;

3)DELETE:used to delete a record from any MySQL table, then you can use SQL command

DELETE FROM.

Syntax:

 DELETE FROM table_name [WHERE Clause]

INDEX:Indexing is the way of keeping table column data sorted so that searching and locating data

consumes less time.Hence indexes essentially improve the speed at which records can be located

and retrieved from a table.

Types of Index:

SIMPLE INDEX: An index created on single column data is called Simple index.

COMPOSITE INDEX: An index created on multiple column data is called a composite index.

1)CREATE INDEX: A database index is a data structure that improves the speed of operations in

a table. Indexes can be created using one or more columns, providing the basis for both rapid

random lookups and efficient ordering of access to records.

Syntax:

CREATE UNIQUE INDEX index_name ON table_name (column1, column2,...);

Department of Electronics & Telecommunication Engineering - DBMS

5

2)DELETE INDEX: Used to delete any index.

Syntax:

mysql> ALTER TABLE table_name DROP INDEX (c);

VIEWS: A view is a table whoes rows are not explicitly stored in the database but are computed as

needed from a view defination.To reduce redundant data to the minimum possible, MySQL allows

creation of an object called a view .A view is mapped to a SELECT statement. This technique

offers a simple, effective way of hiding columns of a table. Example: CREATE VIEW stud_info(name,sid,course) AS SELECT

S.name,S.sid,S.cid

FROM stud S,Enrolled E WHERE S.sid AND E.grade='B'

1)CREATE VIEW: Used to create a view.

Syntax:

mysql> CREATE VIEW database_name.view_name AS SELECT * FROM table_name;

Example:

 CREATE VIEW stud_info(name,sid,course)

AS SELECT S.name,S.sid,S.cid

FROM stud S,Enrolled E

 WHERE S.sid AND E.grade='B'

2)DELETE VIEW: DROP view removes one or more views.

Syntax:

mysql>DROP view viewname;

Example:

 DROP view stud_info;

CONCLUSION:

Thus we studied Open Source Relational Databases: MySQL successfully.

Department of Electronics & Telecommunication Engineering - DBMS

6

Department of Electronics & Telecommunication Engineering - DBMS

7

Dr. D. Y. Patil Institute of Technology, Pimpri, Pune

Department of Electronics & Telecommunication Engineering

Academic Year 2022-23 - Semester 7

TE

Subject – DBMS

EXPERIMENT NO. – 2

TITLE:

Study of Design and Develop SQL DDL statements which demonstrate the use of SQL objects such

as Table, View, Index, Sequence, Synonym

AIM:

Study of Design and Develop SQL DDL statements which demonstrate the use of SQL objects such

as Table, View, Index, Sequence, Synonym

PROBLEM STATEMENT:

(Create following tables with constraints, alter table, insert, drop table , rename table, view, index,

synonym, sequence/AUTO_INCREMENT)

Account(Acc_no, branch_name,balance)

branch(branch_name,branch_city,assets)

customer(cust_name,cust_street,cust_city)

Depositor(cust_name,acc_no)

Loan(loan_no,branch_name,amount)

Borrower(cust_name,loan_no)

THORY:

A schema is the collection of multiple database objects,which are known as schema objects.These

objects have direct access by their owner schema.Below table lists the schema objects.

• Table - to store data

• View - to project data in a desired format from one or more tables

• Sequence - to generate numeric values

• Index - to improve performance of queries on the tables

• Synonym - alternative name of an object

One of the first steps in creating a database is to create the tables that will store an organization's

data.Database design involves identifying system user requirements for various organizational

systems such as order entry, inventory management, and accounts receivable. Regardless of

database size and complexity, each database is comprised of tables.

Table of Contents

1. DDL

2. DML

https://www.w3schools.in/mysql/ddl-dml-dcl/#DDL
https://www.w3schools.in/mysql/ddl-dml-dcl/#DML

Department of Electronics & Telecommunication Engineering - DBMS

8

3. DCL

4. TCL

DDL

DDL is short name of Data Definition Language, which deals with database schemas and

descriptions, of how the data should reside in the database.

• CREATE - to create a database and its objects like (table, index, views, store procedure,

function, and triggers)

• ALTER - alters the structure of the existing database

• DROP - delete objects from the database

• TRUNCATE - remove all records from a table, including all spaces allocated for the records

are removed

• COMMENT - add comments to the data dictionary

• RENAME - rename an object

DML

DML is short name of Data Manipulation Language which deals with data manipulation and

includes most common SQL statements such SELECT, INSERT, UPDATE, DELETE, etc., and it

is used to store, modify, retrieve, delete and update data in a database.

• SELECT - retrieve data from a database

• INSERT - insert data into a table

• UPDATE - updates existing data within a table

• DELETE - Delete all records from a database table

• MERGE - UPSERT operation (insert or update)

• CALL - call a PL/SQL or Java subprogram

• EXPLAIN PLAN - interpretation of the data access path

• LOCK TABLE - concurrency Control

DCL

DCL is short name of Data Control Language which includes commands such as GRANT and

mostly concerned with rights, permissions and other controls of the database system.

• GRANT - allow users access privileges to the database

• REVOKE - withdraw users access privileges given by using the GRANT command

TCL

TCL is short name of Transaction Control Language which deals with a transaction within a

database.

• COMMIT - commits a Transaction

• ROLLBACK - rollback a transaction in case of any error occurs

• SAVEPOINT - to rollback the transaction making points within groups

• SET TRANSACTION - specify characteristics of the transaction

SQL Statements For Tables

char(n). Fixed length character string, with user-specified length n.

varchar(n). Variable length character strings, with user-specified maximum length n.

https://www.w3schools.in/mysql/ddl-dml-dcl/#DCL
https://www.w3schools.in/mysql/ddl-dml-dcl/#TCL
https://www.w3schools.in/mysql/php-mysql-create/
https://www.w3schools.in/mysql/php-mysql-select/
https://www.w3schools.in/mysql/php-mysql-insert/
https://www.w3schools.in/mysql/php-mysql-update/
https://www.w3schools.in/mysql/php-mysql-delete/

Department of Electronics & Telecommunication Engineering - DBMS

9

int. Integer (a finite subset of the integers that is machine-dependent).

smallint. Small integer (a machine-dependent subset of the integer domain type).

numeric(p,d). Fixed point number, with user-specified precision of p digits, with n digits to the right of

 decimal point.

real, double precision. Floating point and double-precision floating point numbers, with machine-dependent precision.

float(n). Floating point number, with user-specified precision of at least n digits.

Constraints

Constraints are the set of rules defined in Oracle tables to ensure data integrity.These rules are

enforced placed for each column or set of columns.Whenever the table participates in data action,

these rules are validated and raise exception upon violation. The available constraint types are NOT

NULL, Primary Key, Unique, Check, and Foreign Key.

The below syntax can be used to impose constraint at the column level.

Syntax:

column [data type] [CONSTRAINT constraint_name] constraint_type

All constraints except NOT NULL, can also be defined at the table level. Composite constraints can

only be specified at the table level.

NOT NULL Constraint

A NOT NULL constraint means that a data row must have a value for the column specified as NOT

NULL.If a column is specified as NOT NULL,the Oracle RDBMS will not allow rows to be stored

to the employee table that violate this constraint.It can only be defined at column level, and not at

the table level.

Syntax:

COLUMN [data type] [NOT NULL]

UNIQUE constraint

Sometimes it is necessary to enforce uniqueness for a column value that is not a primary key

column.The UNIQUE constraint can be used to enforce this rule and Oracle will reject any rows

that violate the unique constraint.Unique constraint ensures that the column values are distinct,

without any duplicates.

Syntax:

Column Level:

COLUMN [data type] [CONSTRAINT <name>] [UNIQUE]

Table Level: CONSTRAINT [constraint name] UNIQUE (column name)

Note: Oracle internally creates unique index to prevent duplication in the column values.Indexes

would be discussed later in PL/SQL.

CREATE TABLE TEST

(... ,

 NAME VARCHAR2(20)

Department of Electronics & Telecommunication Engineering - DBMS

10

 CONSTRAINT TEST_NAME_UK UNIQUE,

 ...);

In case of composite unique key,it must be defined at table level as below.

CREATE TABLE TEST

(... ,

 NAME VARCHAR2(20),

 STD VARCHAR2(20) ,

 CONSTRAINT TEST_NAME_UK UNIQUE (NAME, STD)

);

Primary Key

Each table must normally contain a column or set of columns that uniquely identifies rows of data

that are stored in the table.This column or set of columns is referred to as the primary key.Most

tables have a single column as the primary key.Primary key columns are restricted against NULLs

and duplicate values.

Points to be noted -

• A table can have only one primary key.

• Multiple columns can be clubbed under a composite primary key.

• Oracle internally creates unique index to prevent duplication in the column values.Indexes

would be discussed later in PL/SQL.

Syntax:

Column level:

COLUMN [data type] [CONSTRAINT <constraint name> PRIMARY KEY]

Table level:

CONSTRAINT [constraint name] PRIMARY KEY [column (s)]

The following example shows how to use PRIMARY KEY constraint at column level.

CREATE TABLE TEST (ID NUMBER CONSTRAINT TEST_PK PRIMARY KEY, ...);

The following example shows how to define composite primary key using PRIMARY KEY

constraint at the table level.

CREATE TABLE TEST (..., CONSTRAINT TEST_PK PRIMARY KEY (ID));

Foreign Key

When two tables share the parent child relationship based on specific column, the joining

column in the child table is known as Foreign Key. This property of corresponding column in the

parent table is known as Referential integrity. Foreign Key column values in the child table can

either be null or must be the existing values of the parent table. Please note that only primary key

columns of the referenced table are eligible to enforce referential integrity.

If a foreign key is defined on the column in child table then Oracle does not allow the parent row to

be deleted,if it contains any child rows.However,if ON DELETE CASCADE option is given at the

Department of Electronics & Telecommunication Engineering - DBMS

11

time of defining foreign key,Oracle deletes all child rows while parent row is being

deleted.Similarly,ON DELETE SET NULL indicates that when a row in the parent table is deleted,

the foreign key values are set to null.

Syntax:

Column Level:

COLUMN [data type] [CONSTRAINT] [constraint name] [REFERENCES] [table name (column

name)]

Table level:

CONSTRAINT [constraint name] [FOREIGN KEY (foreign key column name) REFERENCES]

[referenced table name (referenced column name)]

The following example shows how to use FOREIGN KEY constraint at column level.

CREATE TABLE TEST (ccode varchar2(5) CONSTRAINT TEST_FK REFERENCES

PARENT_TEST(ccode), ...);

Usage of ON DELETE CASCADE clause

CREATE TABLE TEST (ccode varchar2(5) CONSTRAINT TEST_FK REFERENCES

PARENT_TEST (ccode) ON DELETE CASCADE, ...);

Check constraint

Sometimes the data values stored in a specific column must fall within some acceptable range of

values. A CHECK constraint requires that the specified check condition is either true or unknown

for each row stored in the table. Check constraint allows to impose a conditional rule on a column,

which must be validated before data is inserted into the column. The condition must not contain a

sub query or pseudo column CURRVAL NEXTVAL, LEVEL, ROWNUM, or SYSDATE.

Oracle allows a single column to have more than one CHECK constraint. In fact, there is no

practical limit to the number of CHECK constraints that can be defined for a column.

Syntax:

Column level:

COLUMN [data type] CONSTRAINT [name] [CHECK (condition)]

Table level:

CONSTRAINT [name] CHECK (condition)

The following example shows how to use CHECK constraint at column level.

CREATE TABLE TEST (..., GRADE char (1) CONSTRAINT TEST_CHK CHECK (upper

(GRADE) in ('A','B','C')), ...);

The following example shows how to use CHECK constraint at table level.

CREATE TABLE TEST (..., CONSTRAINT TEST_CHK CHECK (stdate < = enddate),);

Department of Electronics & Telecommunication Engineering - DBMS

12

create database Student;

show databases;

use Student;

drop database Student;

DDL : create, desc, alter, drop, rename,

create table <table_name> (column_name1 dat_type(size) [constraint], column_name2

data_type(size) [constraint],....column_nameN dat_type(size) [constraint]);

create table Student_info(RollNO integer(10) NOT NULL, Name varchar(30), MobNo integer(10));

desc student_info;

show tables;

drop table student_info;

alter table student_info add(emailid varchar(30));

alter table student_info modify(emailid char(10));

rename Student_info to Stud_data;

create index idx on student_info(rollno);

alter table student_info drop index idx;

index::

show databases;

use student;

show tables;

desc student_info;

Create table using subquery

A table can be created from an existing table in the database using a subquery option.It copies the

table structure as well as the data from the table. Data can also be copied based on conditions.The

column data type definitions including the explicitly imposed NOT NULL constraints are copied

into the new table.

The below CTAS script creates a new table EMP_BACKUP. Employee data of department 20 gets

copied into the new table

.

CREATE TABLE EMP_BACKUP

AS

SELECT * FROM EMP_TEST

WHERE department_id=20;

SQL CREATE INDEX Statement

Department of Electronics & Telecommunication Engineering - DBMS

13

The CREATE INDEX statement is used to create indexes in tables.

Indexes are used to retrieve data from the database very fast. The users cannot see the indexes, they

are just used to speed up searches/queries.

Note: Updating a table with indexes takes more time than updating a table without

(because the indexes also need an update).

So, only create indexes on columns that will be frequently searched against.

CREATE INDEX Syntax

Creates an index on a table. Duplicate values are allowed:

CREATE INDEX index_name

ON table_name (column1, column2, ...);

Example:

create index roll_no on student_info(rollno);

alter table student_info drop index roll_no;

CREATE UNIQUE INDEX Syntax

Creates a unique index on a table. Duplicate values are not allowed:

CREATE UNIQUE INDEX index_name

ON table_name (column1, column2, ...);

Note: The syntax for creating indexes varies among different databases. Therefore: Check the

syntax for creating indexes in your database.

CREATE INDEX Example

The SQL statement below creates an index named "idx_lastname" on the "LastName" column in the

"Persons" table:

CREATE INDEX idx_lastname

ON Persons (LastName);

If you want to create an index on a combination of columns, you can list the column names within

the parentheses, separated by commas:

CREATE INDEX idx_pname

ON Persons (LastName, FirstName);

DROP INDEX Statement

The DROP INDEX statement is used to delete an index in a table.

Department of Electronics & Telecommunication Engineering - DBMS

14

MS Access:

DROP INDEX index_name ON table_name;

SQL Server:

DROP INDEX table_name.index_name;

DB2/Oracle:

DROP INDEX index_name;

MySQL:

ALTER TABLE table_name

DROP INDEX index_name;

SQL Sequence

Sequence is a feature supported by some database systems to produce unique values on demand.

Some DBMS like MySQL supports AUTO_INCREMENT in place of Sequence.

AUTO_INCREMENT is applied on columns, it automatically increments the column value by 1

each time a new record is entered into the table. Sequence is also some what similar to

AUTO_INCREMENT but it has some extra features.

create table Student_info(RollNO integer(10) Primary key AUTO_INCREMENT, Name

varchar(30), MobNo integer(10));

insert into Student_info (Name, MobNo) values (‘Amol’, 9049417616);

insert into Student_info (Name, MobNo) values (‘Amol’, 9049417616);

Creating Sequence

Syntax to create sequences is,

CREATE Sequence sequence-name

start with initial-value

increment by increment-value

maxvalue maximum-value

cycle|nocycle

Initial-value specifies the starting value of the Sequence, increment-value is the value by which

sequence will be incremented and maxvalue specifies the maximum value until which sequence will

increment itself. Cycle specifies that if the maximum value exceeds the set limit, sequence will

restart its cycle from the beginning. No cycle specifies that if sequence exceeds maxvalue an error

will be thrown.

Department of Electronics & Telecommunication Engineering - DBMS

15

Example to create Sequence

The sequence query is following

CREATE Sequence seq_1

start with 1

increment by 1

maxvalue 999

cycle ;

Example to use Sequence

The class table,

ID NAME

1 abhi

2 adam

4 alex

The sql query will be,

INSERT into class value(seq_1.nextval,'anu');

Result table will look like,

ID NAME

1 abhi

2 adam

4 alex

1 anu

Once you use nextval the sequence will increment even if you don't Insert any record into the table.

CREATE SYNONYM:

Examples To define the synonym offices for the table locations in the schema hr, issue the

following statement:

CREATE SYNONYM offices

 FOR hr.locations;

To create a PUBLIC synonym for the employees table in the schema hr on the remote database, you

could issue the following statement:

CREATE PUBLIC SYNONYM emp_table

Department of Electronics & Telecommunication Engineering - DBMS

16

 FOR hr.employees@remote.us.oracle.com;

A synonym may have the same name as the underlying object, provided the underlying object is

contained in another schema.

Oracle Database Resolution of Synonyms: Example Oracle Database attempts to resolve references

to objects at the schema level before resolving them at the PUBLIC synonym level. For example,

the schemas oe and sh both contain tables named customers. In the next example, user SYSTEM

creates a PUBLIC synonym named customers for oe.customers:

CREATE PUBLIC SYNONYM customers FOR oe.customers;

If the user sh then issues the following statement, then the database returns the count of rows from

sh.customers:

SELECT COUNT(*) FROM customers;

To retrieve the count of rows from oe.customers, the user sh must preface customers with the

schema name. (The user sh must have select permission on oe.customers as well.)

SELECT COUNT(*) FROM oe.customers;

If the user hr's schema does not contain an object named customers, and if hr has select permission

on oe.customers, then hr can access the customers table in oe's schema by using the public synonym

customers:

SELECT COUNT(*) FROM customers;

SQL CREATE VIEW Statement

In SQL, a view is a virtual table based on the result-set of an SQL statement.

A view contains rows and columns, just like a real table. The fields in a view are fields from one or

more real tables in the database.

You can add SQL functions, WHERE, and JOIN statements to a view and present the data as if the

data were coming from one single table.

CREATE VIEW Syntax

CREATE VIEW view_name AS

SELECT column1, column2, ...

FROM table_name

WHERE condition;

Note: A view always shows up-to-date data! The database engine recreates the data, using the

view's SQL statement, every time a user queries a view.

Department of Electronics & Telecommunication Engineering - DBMS

17

SQL CREATE VIEW Examples

If you have the Northwind database you can see that it has several views installed by default.

The view "Current Product List" lists all active products (products that are not discontinued) from

the "Products" table. The view is created with the following SQL:

CREATE VIEW [Current Product List] AS

SELECT ProductID, ProductName

FROM Products

WHERE Discontinued = No;

Then, we can query the view as follows:

SELECT * FROM [Current Product List];

Another view in the Northwind sample database selects every product in the "Products" table with a

unit price higher than the average unit price:

CREATE VIEW [Products Above Average Price] AS

SELECT ProductName, UnitPrice

FROM Products

WHERE UnitPrice > (SELECT AVG(UnitPrice) FROM Products);

We can query the view above as follows:

SELECT * FROM [Products Above Average Price];

Another view in the Northwind database calculates the total sale for each category in 1997. Note

that this view selects its data from another view called "Product Sales for 1997":

CREATE VIEW [Category Sales For 1997] AS

SELECT DISTINCT CategoryName, Sum(ProductSales) AS CategorySales

FROM [Product Sales for 1997]

GROUP BY CategoryName;

We can query the view above as follows:

SELECT * FROM [Category Sales For 1997];

We can also add a condition to the query. Let's see the total sale only for the category "Beverages":

SELECT * FROM [Category Sales For 1997]

WHERE CategoryName = 'Beverages';

SQL Updating a View

You can update a view by using the following syntax:

SQL CREATE OR REPLACE VIEW Syntax

CREATE OR REPLACE VIEW view_name AS

SELECT column1, column2, ...

Department of Electronics & Telecommunication Engineering - DBMS

18

FROM table_name

WHERE condition;

Now we want to add the "Category" column to the "Current Product List" view. We will update the

view with the following SQL:

CREATE OR REPLACE VIEW [Current Product List] AS

SELECT ProductID, ProductName, Category

FROM Products

WHERE Discontinued = No;

SQL Dropping a View

You can delete a view with the DROP VIEW command.

SQL DROP VIEW Syntax

DROP VIEW view_name;

Examples:

insert into student_info values(3,'amol',2154455,'abc@gmai');

insert into student_info values(1,'vijay',21543255,'asvs@gmai');

select * from student_info;

view::

create view myview as select rollno,name from student_info;

select * from myview;

create view myview2 as select rollno,name from student_info where rollno>1;

(Create following tables with constraints, alter table, insert, drop table , rename table, view, index,

synonym, sequence/AUTO_INCREMENT)

Account(Acc_no, branch_name,balance)

branch(branch_name,branch_city,assets)

customer(cust_name,cust_street,cust_city)

Depositor(cust_name,acc_no)

Loan(loan_no,branch_name,amount)

Borrower(cust_name,loan_no)

Solve following queries:

Q1.Create Depositor table with foreign key with on delete cascade constraint on columns

cust_name and acc_no.

Q2. Create Borrower table with foreign key with on delete cascade constraint on columns

cust_name,loan_no.

Department of Electronics & Telecommunication Engineering - DBMS

19

Q3. Create Account table with primary key and AUTO_INCREMENT constraint on Acc_no

column

Q4. Create Loan table with primary key and AUTO_INCREMENT constraint on loan_no column.

Q5. Create Customer table with primary key constraint on cust_name column.

Q6. Create View on Account table and Loan Table.

Q7. Insert following Data into above tables

Q.8. Create synonym for customer table as cust.

Q.9. Create sequence acc_seq and use in Account table for acc_no column.

Q.10 Insert following data into all above tables.

**************************Problem Statements***********************

Q1. Q1.Create Depositor table with foreign key with on delete cascade constraint on columns

cust_name and acc_no.

Column Level:

SQL> create table depositor (cust_name varchar(20) CONSTRAINT FK_1 REFRENECS

customer(cust_name) ON DELETE CASCADE , acc_no integer(10) CONSTRAINT FK_2

REFRENECS account(acc_no) ON DELETE CASCADE);

Q2. Create Borrower table with foreign key with on delete cascade constraint on columns

cust_name,loan_no

Table level :

SQL> create table borrower (cust_name varchar(20), loan_no integer(10) , CONSTRAINT FK_1

FOREIGN KEY (cust_name) REFRENECS customer(cust_name) ON DELETE CASCADE,

CONSTRAINT FK_2 FOREIGN KEY (loan_no) FK2 REFRENECS loan(loan_no) ON DELETE

CASCADE);

Q3. Create Account table with primary key and AUTO_INCREMENT constraint on Acc_no

column

SQL> create table account (acc_no integer(10) primary key AUTO_INCREMENT, branch_name

varchar(20), balance integer(10));

Q4. Create Loan table with primary key and AUTO_INCREMENT constraint on loan_no column.

SQL> create table loan (loan_no integer(10) primary key AUTO_INCREMENT, branch_name

varchar(20), amount integer(10));

Q5. Create Customer table with primary key constraint on cust_name column.

Department of Electronics & Telecommunication Engineering - DBMS

20

SQL> create table customer (cust_name varchar(20) primary key, cust_street varchar(20), city

varchar(20));

Q6. Create View on Account table and Loan Table.

SQL> create view ac1 AS (select acc_no, balance from account);

SQL> create view ln1 AS (select loan_no, amount from loan);

Q.7. Create synonym for customer table as cust.

SQL> create public synonym cust2 for customer1;

Synonym created.

Q.8. Create sequence acc_seq and use in Account table for acc_no column.

CREATE Sequence seq_1 start with 1 increment by 1 maxvalue 100000 no cycle ;

Q.9 Insert following data into all above tables.

******************************** Table Structure *********************************

create table Account(Acc_no, branch_name,balance) :

SQL> select * from account;

ACC_NO BRANCH_NAME BALANCE

---------- -------------------- ----------

1001 Akurdi 15000

1002 Nigdi 11000

1003 Chinchwad 20000

1004 Wakad 10000

1005 Akurdi 14000

1006 Nigdi 17000

6 rows selected.

Create table branch(branch_name,branch_city,assets) :

SQL> select * from branch;

BRANCH_NAME BRANCH_CITY ASSETS

-------------------- -------------------- ----------

Akurdi Pune 200000

Nigdi Pimpri_chinchwad 300000

Wakad Pune 100000

Chinchwad Pimpri_chinchwad 400000

Department of Electronics & Telecommunication Engineering - DBMS

21

Sangvi Pune 230000

create table customer(cust_name,cust_street,cust_city) :

SQL> select * from customer1;

CUST_NAME CUST_STREET CUST_CITY

-------------------- -------------------- --------------------

Rutuja JM road Pune

Alka Senapati road Pune

Samiksha Savedi road Pimpri_chinchwad

Trupti Lakshmi road Pune

Mahima Pipeline road Pimpri_chinchwad

Ayushi FC road pune

Priti Camp road Pimri_chinchwad

7 rows selected.

Create table Depositor(cust_name,acc_no):

SQL> select * from depositer;

CUST_NAME ACC_NO

-------------------- ----------

Rutuja 1005

Trupti 1002

Samiksha 1004

Loan(loan_no,branch_name,amount) :

SQL> select * from loan;

LOAN_NO BRANCH_NAME AMMOUNT

----------------- ----------------------- ---------------

2001 Akurdi 2000

2002 Nigdi 1200

2003 Akurdi 1400

2004 Wakad 1350

2005 Chinchwad 1490

2006 Akurdi 12300

2007 Akurdi 14000

7 rows selected.

Create table borrower(cust_name,loan_no) :

SQL> select * from borrower;

CUST_NAME LOAN_NO

-------------------- --------------

Mahima 2005

Department of Electronics & Telecommunication Engineering - DBMS

22

Trupti 2002

Rutuja 2004

Ayushi 2006

Priti 2007

CONCLUSION:

Thus, we successfully implemented Table, View, Index, Sequence, Synonym MySQL queries.

Department of Electronics & Telecommunication Engineering - DBMS

23

Dr. D. Y. Patil Institute of Technology, Pimpri, Pune

Department of Electronics & Telecommunication Engineering

Academic Year 2022-23 - Semester 7

TE

Subject : DBMS

EXPERIMENT NO. – 3 &4

TITLE:

To Design at least 10 SQL queries for suitable database application using SQL DML

statements: Insert, Select, Update, Delete with operators, functions, and set operator.

OBJECTIVES:

To Study and Design SQL queries for suitable database application using SQL DML statements:

Insert, Select, Update, Delete with operators, functions, and set operator.

PROBLEM STATEMENT:

(Insert, Select, Update, Delete, operators, functions, setoperator, all constraints, view, index,

synonym, sequence)

Account(Acc_no, branch_name,balance)

branch(branch_name,branch_city,assets)

customer(cust_name,cust_street,cust_city)

Depositor(cust_name,acc_no)

Loan(loan_no,branch_name,amount)

Borrower(cust_name,loan_no)

Input: insert Data into above tables and fire queries on databases;

THEORY:

Set Operators:

The set operations union, intersect, and except operate on relations and correspond to the relational

algebra operations   −

Each of the above operations automatically eliminates duplicates; to retain all duplicates use the

corresponding multiset versions union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it occurs:

m + n times in r union all s

min(m,n) times in r intersect all s

max(0, m – n) times in r except all s

Aggregate Functions:

Department of Electronics & Telecommunication Engineering - DBMS

24

These functions operate on the multiset of values of a column of a relation, and return a value

 avg: average value

 min: minimum value

 max: maximum value

 sum: sum of values

 count: number of values

Solve following queries:

Q1. Find the names of all branches in loan relation.

Q2. Find all loan numbers for loans made at Akurdi Branch with loan amount > 12000.

Q3. Find all customers who have a loan from bank. Find their names,loan_no and loan

 amount.

Q4. List all customers in alphabetical order who have loan from Akurdi branch.

Q5. Find all customers who have an account or loan or both at bank.

Q6. Find all customers who have both account and loan at bank.

Q7. Find all customer who have account but no loan at the bank.

Q8. Find average account balance at Akurdi branch.

Q9. Find the average account balance at each branch

Q10. Find no. of depositors at each branch.

Q11. Find the branches where average account balance > 12000.

Q12. Find number of tuples in customer relation.

Q13. Calculate total loan amount given by bank.

Q14. Delete all loans with loan amount between 1300 and 1500.

Q15. Delete all tuples at every branch located in Nigdi.

Q.16. Create synonym for customer table as cust.

Q.17. Create sequence roll_seq and use in student table for roll_no column.

Create above tables with appropriate constraints like primary key, foreign key, check constrains, not

null etc.

******************************** Table Structure *********************************

create table Account(Acc_no, branch_name,balance) :

SQL> select * from account;

ACC_NO BRANCH_NAME BALANCE

Department of Electronics & Telecommunication Engineering - DBMS

25

---------- -------------------- ----------

1001 Akurdi 15000

1002 Nigdi 11000

1003 Chinchwad 20000

1004 Wakad 10000

1005 Akurdi 14000

1006 Nigdi 17000

6 rows selected.

Create table branch(branch_name,branch_city,assets) :

SQL> select * from branch;

BRANCH_NAME BRANCH_CITY ASSETS

-------------------- -------------------- ----------

Akurdi Pune 200000

Nigdi Pimpri_chinchwad 300000

Wakad Pune 100000

Chinchwad Pimpri_chinchwad 400000

Sangvi Pune 230000

create table customer(cust_name,cust_street,cust_city) :

SQL> select * from customer1;

CUST_NAME CUST_STREET CUST_CITY

-------------------- -------------------- --------------------

Rutuja JM road Pune

Alka Senapati road Pune

Samiksha Savedi road Pimpri_chinchwad

Trupti Lakshmi road Pune

Mahima Pipeline road Pimpri_chinchwad

Ayushi FC road pune

Priti Camp road Pimri_chinchwad

7 rows selected.

Create table Depositor(cust_name,acc_no):

SQL> select * from depositer;

CUST_NAME ACC_NO

-------------------- ----------

Rutuja 1005

Trupti 1002

Samiksha 1004

Department of Electronics & Telecommunication Engineering - DBMS

26

Loan(loan_no,branch_name,amount) :

SQL> select * from loan;

LOAN_NO BRANCH_NAME AMMOUNT

----------------- ----------------------- ---------------

2001 Akurdi 2000

2002 Nigdi 1200

2003 Akurdi 1400

2004 Wakad 1350

2005 Chinchwad 1490

2006 Akurdi 12300

2007 Akurdi 14000

7 rows selected.

Create table borrower(cust_name,loan_no) :

SQL> select * from borrower;

CUST_NAME LOAN_NO

-------------------- --------------

Mahima 2005

Trupti 2002

Rutuja 2004

Ayushi 2006

Priti 2007

**************************Problem Statements***********************

Q1. Find the names of all branches in loan relation.

SQL>select branch_name from loan;

BRANCH_NAME

Akurdi

Nigdi

Akurdi

Wakad

Chinchwad

Akurdi

Akurdi

7 rows selected.

Department of Electronics & Telecommunication Engineering - DBMS

27

Q2. Find all loan numbers for loans made at Akurdi Branch with loan amount >12000.

SQL> select loan_no from loan where branch_name='Akurdi' and amount>12000;

LOAN_NO

2006

2007

Q3. Find all customers who have a loan from bank. Find their names, loan_no and loan

amount.

SQL> select b.cust_name,b.loan_no,l.amount from borrower b inner join loan l on

b.loan_no=l.loan_no;

CUST_NAME LOAN_NO AMOUNT

-------------------- -------------- --------------

Trupti 2002 1200

Rutuja 2004 1350

Mahima 2005 1490

Ayushi 2006 12300

Priti 2007 14000

Q4. List all customers in alphabetical order who have loan from Akurdi branch.

SQL> select b.cust_name from borrower b inner join loan l on b.loan_no=l.loan_no

where l.branch_name='Akurdi'order by b.cust_name;

CUST_NAME

Ayushi

Priti

Q5. Find all customers who have an account or loan or both at bank.

SQL>select cust_name from depositer union select cust_name from borrower;

CUST_NAME

Ayushi

MahimaPriti

Rutuja

Samiksha

Trupti

6 rows selected.

Department of Electronics & Telecommunication Engineering - DBMS

28

Q6. Find all customers who have both account and loan at bank.

SQL> select cust_name from depositer intersect select cust_name from borrower;

CUST_NAME

Rutuja

Trupti

Q7. Find all customer who have account but no loan at the bank.

SQL> select cust_name from depositer minus select cust_name from borrower;

CUST_NAME

Samiksha

Q8. Find average account balance at Akurdi branch.

SQL> select avg(balance) from account where branch_name='Akurdi';

AVG(BALANCE)

14500

Q9. Find the average account balance at each branch

SQL> select branch_name,avg(balance) from account group by branch_name;

BRANCH_NAME AVG(BALANCE)

-------------------- ---------------------

Chinchwad 20000

Nigdi 14000

Wakad 10000

Akurdi 14500

10. Find no. of depositors at each branch.

SQL> select branch_name,count(branch_name) from account a inner join depositer d on

a.acc_no=d.acc_no group by branch_name;

BRANCH_NAME COUNT(BRANCH_NAME)

-------------------- -------------------------

Nigdi 1

Wakad 1

Akurdi 1

Q11. Find the branches where average account balance > 12000.

Department of Electronics & Telecommunication Engineering - DBMS

29

SQL> select branch_name from account group by branch_name having avg(balance)>1200;

BRANCH_NAME

Chinchwad

Nigdi

Wakad

Akurdi

Q12. Find number of tuples in customer relation.

SQL> select count(cust_name) no_of_tuples from customer1;

NO_OF_TUPLES

7

Q13. Calculate total loan amount given by bank.

SQL> select sum(amount) total_loan_amount from loan;

TOTAL_LOAN_AMOUNT

33740

Q14. Delete all loans with loan amount between 1300 and 1500.

SQL> delete from loan where amount>1300 and amount<1500;

LOAN_NO BRANCH_NAME AMOUNT

---------- -------------------- ------------

2001 Akurdi 2000

2002 Nigdi 1200

2006 Akurdi 12300

2007 Akurdi 14000

Q15. Delete all tuples at every branch located in Nigdi.

SQL>delete from branch where branch_name='Nigdi';

Q.16. Create synonym for customer table as cust.

SQL> create public synonym cust2 for customer1;

Synonym created.

Q.17. Create sequence roll_seq and use in student table for roll_no column.

Department of Electronics & Telecommunication Engineering - DBMS

30

CONCLUSION:

Thus we successfully implemented MySQL queries.

Department of Electronics & Telecommunication Engineering - DBMS

31

Dr. D. Y. Patil Institute of Technology, Pimpri, Pune

Department of Electronics & Telecommunication Engineering

Academic Year 2022-23 - Semester 7

TE

Subject – DBMS

EXPERIMENT NO. – 5

TITLE:

Design SQL queries for suitable database application using SQL DML statements: all types of Join,

Sub-Query and View.

OBJECTIVE:

Design SQL queries for suitable database application using SQL DML statements: all types of Join,

Sub-Query and View.

THEORY:

PROBLEM STATEMENTS:

1. Create following Tables

cust_mstr(cust_no,fname,lname)

add_dets(code_no,add1,add2,state,city,pincode)

Retrieve the address of customer Fname as 'xyz' and Lname as 'pqr'

2. Create following Tables

cust_mstr(custno,fname,lname)

acc_fd_cust_dets(codeno,acc_fd_no)

fd_dets(fd_sr_no,amt)

List the customer holding fixed deposit of amount more than 5000

3. Create following Tables

emp_mstr(e_mpno,f_name,l_name,m_name,dept,desg,branch_no)

branch_mstr(name,b_no)

List the employee details along with branch names to which they belong

4. Create following Tables

emp_mstr(emp_no,f_name,l_name,m_name,dept)

cntc_dets(code_no,cntc_type,cntc_data)

Department of Electronics & Telecommunication Engineering - DBMS

32

List the employee details along with contact details using left outer join & right join

5. Create following Tables

cust_mstr(cust_no,fname,lname)

add_dets(code_no,pincode)

List the customer who do not have bank branches in their vicinity.

6. a) Create View on borrower table by selecting any two columns and perform insert update

delete operations

b) Create view on borrower and depositor table by selecting any one column from each table

perform insert update delete operations

c) create updateable view on borrower table by selecting any two columns and perform insert,

update and delete operations.

Solutions:

1. Create following Tables

cust_mstr(cust_no,fname,lname)

add_dets(code_no,add1,add2,state,city,pincode)

Retrieve the address of customer Fname as 'Rutuja' and Lname as 'Deshmane'

SQL> select * from cust_mstr;

CUSTNO FNAME LNAME

---------- -------------------- --------------------

C101 Rutuja Deshmane

C102 Trupti Bargaje

C103 Samiksha Dharmadhikari

C104 Mahima Khandelwal

SQL> select add1,add2 from add_dets where code_no in(select custno from cust_mstr where

fname='Rutuja' and lname='Deshmane');

ADD1 ADD2

-------------------- --------------------

venu nagar dange chowk

2. Create following Tables

cust_mstr(custno,fname,lname)

acc_fd_cust_dets(codeno,acc_fd_no)

Department of Electronics & Telecommunication Engineering - DBMS

33

fd_dets(fd_sr_no,amt)

List the customer holding fixed deposit of amount more than 5000

SQL> select fname,lname from cust_mstr where custno in(select codeno from acc_fd_cust_dets

where acc_fd_no in(select fd_sr_no from fd_dets where amt>5000));

FNAME LNAME

-------------------- --------------------

Rutuja Deshmane

Samiksha Dharmadhikari

3. Create following Tables

emp_mstr(e_mpno,f_name,l_name,m_name,dept,desg,branch_no)

branch_mstr(name,b_no)

List the employee details along with branch names to which they belong

SQL> select emp_no,fname,lname,mname,dept,desg,branch_no,b.name from emp_mstr e inner join

branch_tb b on e.branch_no=b.b_no;

EMP_NO FNAME LNAME MNAME DEPT DESG BRANCH_NO NAME
-------- ---------- --------------- ---------- ------------ ---------- ----------- -------------------------

1011 Samarth Deshmane Suryakant sports trainer 2011 Akurdi

1012 Alka Choudhari Rohitash comp tester 2012 nigdi

1013 Shriyash Shingare Santosh comp coder 2013 chinchwad

4. Create following Tables

emp_mstr(emp_no,f_name,l_name,m_name,dept)

cntc_dets(code_no,cntc_type,cntc_data)

List the employee details along with contact details using left outer join & right join

SQL> select emp_no,fname,lname,mname,dept,c.code_no,c.cntc_type,c.cntc_data from emp_mstr e

left outer join cntc_dets c on e.emp_no=c.code_no;

EMP_NO FNAME LNAME MNAME DEPT CODE_NO CNTC_TYPE CNTC_DATA
-------------------- ---------- -------------------- ----------------- ---------- ---------------- -----------------------
1011 Samarth Deshmane Suryakant sports 1011 phno 9689349523
1012 Alka Choudhari Rohitash comp 1012 email rutu@gmail.com
1013 Shriyash Shingare Santosh comp

SQL> select emp_no,fname,lname,mname,dept,c.code_no,c.cntc_type,c.cntc_data from emp_mstr e

right outer join cntc_dets c on e.emp_no=c.code_no;

EMP_NO FNAME LNAME MNAME DEPT CODE_NO CNTC_TYPE CNTC_DATA
-------------------- ---------- -------------------- ----------------- ---------- ---------------- -----------------------
1011 Samarth Deshmane Suryakant sports 1011 phno 9689349523
1012 Alka Choudhari Rohitash comp 1012 email rutu@gmail.com

Department of Electronics & Telecommunication Engineering - DBMS

34

1014 email shrink@gmail.com

5. Create following Tables

cust_mstr(cust_no,fname,lname)

add_dets(code_no,pincode)

List the customer who do not have bank branches in their vicinity.

SQL> select * from cust_mstr where cust_no in (select code_no from add_dets where code_no like

'C%' and pincode not in (select pincode from add_dets where code_no like 'B%'));

CUST_NO FNAME LNAME

---------- --------------- --------------------

C102 Trupti Bargaje

6. A) Create View on borrower table by selecting any two columns and perform insert update delete

operations

SQL> select * from borrower;

ACC_NO NAME AMOUNT

---------- ---------- ----------------------------

101 Aish 10000

102 Adi 10000

103 Swati 45216

SQL> create view b1 as select name, amount from borrower;

View created.

SQL> select * from b1;

NAME AMOUNT

---------- ---------------------

Aish 10000

Adi 10000

Swati 45216

SQL> update b1 set amount=7845 where name='swati';

1 row updated.

SQL> select * from borrower;

ACC_NO NAME AMOUNT

---------- ---------- ----------

101 Aish 10000

102 Adi 10000

103 Swati 7845

Department of Electronics & Telecommunication Engineering - DBMS

35

SQL> delete from b1 where name='swati';

1 row deleted.

SQL> select * from borrower;

ACC_NO NAME AMOUNT

---------- ---------- ----------

101 Aish 10000

B) Create view on borrower and depositor table by selecting any one column from each table

perform insert update delete operations

SQL> select * from borrower;

ACC_NO NAME AMOUNT

---------- ---------- ----------

101 Aish 10000

102 Adi 10000

SQL> select * from depositor;

DACC_NO DNAME DAMOUNT

---------- ---------- ----------

102 Adi 45789

104 Sneha 7895

103 Swati 79854

SQL> create view b3 as select amount loan, damount deposit from borrower, depositor;

View created.

SQL> select * from b3;

LOAN DEPOSIT

---------- ----------

10000 45789

10000 7895

10000 79854

C) create updateable view on borrower table by selecting any two columns and perform insert,

Update and delete operations.

SQL> create table borrower(acc_no number(10) primary key,name varchar(10),amount

number(10));

Table created.

SQL> insert into borrower values(&acc,'&name',&amount);

Enter value for acc: 101

Enter value for name: Aish

Department of Electronics & Telecommunication Engineering - DBMS

36

Enter value for amount: 10000

old 1: insert into borrower values(&acc,'&name',&amount)

new 1: insert into borrower values(101,'aish',10000)

1 row created.

SQL> /

Enter value for acc: 102

Enter value for name: Adi

Enter value for amount: 4500

old 1: insert into borrower values(&acc,'&name',&amount)

new 1: insert into borrower values(102,'adi',4500)

1 row created.

SQL> /

Enter value for acc: 103

Enter value for name: Swati

Enter value for amount: 45216.

old 1: insert into borrower values(&acc,'&name',&amount)

new 1: insert into borrower values(103,'swati',45216.)

1 row created.

SQL> create view bview as select acc_no, amount from borrower;

View created.

SQL> insert into bview values(&acc,&amount);

Enter value for acc: 104

Enter value for amount: 58901

old 1: insert into bview values(&acc,&amount)

new 1: insert into bview values(104,58901)

1 row created.

SQL> select * from borrower;

ACC_NO NAME AMOUNT

---------- ---------- ----------

101 aish 10000

102 adi 4500

103 swati 45216

104 58901

SQL> update bview set amount=45000 where acc_no=104;

1 row updated.

SQL> select * from borrower;

ACC_NO NAME AMOUNT

---------- ---------- ----------

101 aish 10000

Department of Electronics & Telecommunication Engineering - DBMS

37

102 adi 4500

103 swati 45216

104 45000

SQL> select * from bview;

ACC_NO AMOUNT

---------- ----------

101 10000

102 4500

103 45216

104 45000

SQL> delete from bview where acc_no=104;

1 row deleted.

SQL> select * from bview;

ACC_NO AMOUNT

---------- ----------

101 10000

102 4500

103 45216

CONCLUSION:

Thus we successfully implemented MySQL queries.

Department of Electronics & Telecommunication Engineering - DBMS

38

Dr. D. Y. Patil Institute of Technology, Pimpri, Pune

Department of Electronics & Telecommunication Engineering

Academic Year 2022-23 - Semester 7

TE

Subject – DBMS

EXPERIMENT NO.- 6

TITLE:

Study of Pl SQL Control Structures and Exception Handling.

AIM:

Study of Pl SQL Control Structures and Exception Handling.

INPUT:

Student roll no and attendance is input to Procedure.

THEORY:

• The PL/SQL programming language was developed by Oracle Corporation in the late 1980s

as procedural extension language for SQL and the Oracle relational database. Following are

certain notable facts about PL/SQL −

• PL/SQL is a completely portable, high-performance transaction-processing language.

• PL/SQL provides a built-in, interpreted and OS independent programming environment.

• PL/SQL can also directly be called from the command-line SQL*Plus interface.

• Direct call can also be made from external programming language calls to database.

• PL/SQL's general syntax is based on that of ADA and Pascal programming language.

• Apart from Oracle, PL/SQL is available in TimesTen in-memory database and IBM DB2.

Features of PL/SQL

• PL/SQL has the following features −

• PL/SQL is tightly integrated with SQL.

• It offers extensive error checking.

• It offers numerous data types.

Department of Electronics & Telecommunication Engineering - DBMS

39

• It offers a variety of programming structures.

• It supports structured programming through functions and procedures.

• It supports object-oriented programming.

• It supports the development of web applications and server pages.

Advantages of PL/SQL

• PL/SQL has the following advantages −

• SQL is the standard database language and PL/SQL is strongly integrated with SQL.

PL/SQL supports both static and dynamic SQL. Static SQL supports DML operations and

transaction control from PL/SQL block. In Dynamic SQL, SQL allows embedding DDL

statements in PL/SQL blocks.

• PL/SQL allows sending an entire block of statements to the database at one time. This

reduces network traffic and provides high performance for the applications.

• PL/SQL gives high productivity to programmers as it can query, transform, and update data

in a database.

• PL/SQL saves time on design and debugging by strong features, such as exception handling,

encapsulation, data hiding, and object-oriented data types.

• Applications written in PL/SQL are fully portable.

• PL/SQL provides high security level.

• PL/SQL provides access to predefined SQL packages.

• PL/SQL provides support for Object-Oriented Programming.

• PL/SQL provides support for developing Web Applications and Server Pages.

DECLARE :- if you want to decalre a variable in plsql program then it takes place in declare section

BEGIN:- is used to start the working of program and end is used to terminate the begin.

Delimiter is used to run (/)

 SET SERVEROUTPUT ON ; is run before every time when you compiled a program in a session.

SET ECHO ON : is optional

DBMS_OUTPUT.PUT_LINE command for e.g. if sal=10 and you want to print it Then it looks

like dbms_output.put_line(‘the salary is ‘ ||sal);

Department of Electronics & Telecommunication Engineering - DBMS

40

IF STATEMENT

Common syntax

IF condition THEN

 statement 1;

ELSE

 statement 2;

 END IF;

INTO command: is used to catch a value in variable from table under some while condition

Only one value must be returned For e.g. in the above example if there are two people who’s name

is john then it shows error

Exception Handling:

An exception is an error condition during a program execution. PL/SQL supports programmers

to catch such conditions using EXCEPTION block in the program and an appropriate action is

taken against the error condition. There are two types of exceptions −

• System-defined exceptions

• User-defined exceptions

Syntax for Exception Handling

The general syntax for exception handling is as follows. Here you can list down as many exceptions

as you can handle. The default exception will be handled using WHEN others THEN −

DECLARE

 <declarations section>

BEGIN

 <executable command(s)>

EXCEPTION

 <exception handling goes here >

 WHEN exception1 THEN

Department of Electronics & Telecommunication Engineering - DBMS

41

 exception1-handling-statements

 WHEN exception2 THEN

 exception2-handling-statements

 WHEN exception3 THEN

 exception3-handling-statements

 WHEN others THEN

 exception3-handling-statements

END;

Problem Statement:

Use of Control structure and Exception handling is mandatory. Write a PL/SQL block of code for the following

requirements: Schema:

1. Borrower(Rollin, Name, DateofIssue, NameofBook, Status)

2. Fine(Roll_no,Date,Amt)

a) Accept roll_no & name of book from user.

b) Check the number of days (from date of issue), if days are between 15 to 30

then fine amount will be Rs 5per day.

c) If no. of days>30, per day fine will be Rs 50 per day & for days less than 30,

Rs. 5 per day.

d) After submitting the book, status will change from I to R.

e) If condition of fine is true, then details will be stored into fine table.

Solution in Mysql:

Steps are:

1) Create borrower and fine table with primary and foreign keys

2) insert records in borrower table

3) create procedure to insert entries in fine table with exception handling

4) call procedure to calculate fine and display fine table.

mysql> create table borrower(rollin int primary key,name varchar(20),dateofissue

date,nameofbook varchar(20),status varchar(20));

Query OK, 0 rows affected (0.30 sec)

mysql> desc borrower;

+-------------+-------------+------+-----+---------+-------+

Department of Electronics & Telecommunication Engineering - DBMS

42

| Field | Type | Null | Key | Default | Extra |

+-------------+-------------+------+-----+---------+-------+

| rollin | int(11) | NO | PRI | NULL | |

| name | varchar(20) | YES | | NULL | |

| dateofissue | date | YES | | NULL | |

| nameofbook | varchar(20) | YES | | NULL | |

| status | varchar(20) | YES | | NULL | |

+-------------+-------------+------+-----+---------+-------+

5 rows in set (0.00 sec)

mysql> create table fine(rollno int,foreign key(rollno) references borrower(rollin),returndate

date,amount int);

Query OK, 0 rows affected (0.38 sec)

mysql> desc fine;

+------------+---------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+---------+------+-----+---------+-------+

| roll_no | int(11) | YES | MUL | NULL | |

| returndate | date | YES | | NULL | |

| amnt | int(11) | YES | | NULL | |

+------------+---------+------+-----+---------+-------+

3 rows in set (0.02 sec)

mysql> insert into borrower values(1,'abc','2017-08-01','SEPM','PEN')$

Query OK, 1 row affected (0.16 sec)

mysql> insert into borrower values(2,'xyz','2017-07-01','DBMS','PEN')$

Query OK, 1 row affected (0.08 sec)

mysql> insert into borrower values(3,'pqr','2017-08-15','DBMS','PEN')$

Query OK, 1 row affected (0.03 sec)

mysql> delimiter $

mysql> create procedure calc_fine_lib6(in roll int)

begin

declare fine1 int;

declare noofdays int;

declare issuedate date;

declare exit handler for SQLEXCEPTION select'create table definition';

select dateofissue into issuedate from borrower where rollin=roll;

select datediff(curdate(),issuedate) into noofdays;

Department of Electronics & Telecommunication Engineering - DBMS

43

if noofdays>15 and noofdays<=30 then

set fine1=noofdays*5;

insert into fine values(roll,curdate(),fine1);

elseif noofdays>30 then

set fine1=((noofdays-30)*50) + 15*5;

insert into fine values(roll,curdate(),fine1);

else

insert into fine values(roll,curdate(),0);

end if;

update borrower set status='return' where rollin=roll;

end $

mysql> call calc_fine_lib6(1)$

Query OK, 0 rows affected (0.09 sec)

mysql> call calc_fine_lib6(2)$

Query OK, 0 rows affected (0.09 sec)

mysql> call calc_fine_lib6(3)$

Query OK, 0 rows affected (0.09 sec)

mysql> select * from fine;

-> $

+---------+------------+------+

| roll_no | returndate | amnt |

+---------+------------+------+

| 1 | 2017-08-22 | 105 |

| 2 | 2017-08-22 | 780 |

| 3 | 2017-08-22 | 0 |

+---------+------------+------+

3 rows in set (0.00 sec)

mysql>drop table fine$

Query OK, 0 rows affected (0.21 sec)

mysql> call calc_fine_lib6(1)$

+-------------------------+

| create table definition |

+-------------------------+

| create table definition |

+-------------------------+

1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Department of Electronics & Telecommunication Engineering - DBMS

44

mysql> create table fine(rollno int,foreign key(rollno) references borrower(rollin),returndate

date,amount int)$

Query OK, 0 rows affected (0.34 sec)

mysql> call calc_fine_lib6(1)$

Query OK, 0 rows affected (0.09 sec)

mysql> select * from fine$

+--------+------------+--------+

| rollno | returndate | amount |

+--------+------------+--------+

| 1 | 2017-08-22 | 105 |

+--------+------------+--------+

1 row in set (0.00 sec)

--

Problem Statement: Consider table Stud(Roll, Att,Status)

Write a PL/SQL block for following requirement and handle the exceptions. Roll no. of student will

be entered by user. Attendance of roll no. entered by user will be checked in Stud table. If

attendance is less than 75% then display the message “Term not granted” and set the status in stud

table as “D”. Otherwise display message “Term granted” and set the status in stud table as “ND”

Solution in Oracle:

SQL> create table stud1(roll_no number(5),attendance number(5),status varchar(7));

Table created.

SQL> select * from stud1;

 ROLL_NO ATTENDANCE STATUS

 ---------- ---------- -------

101 80

102 65

103 92

104 55

105 68

SQL> set serveroutput on;

SQL>

declare

Department of Electronics & Telecommunication Engineering - DBMS

45

roll number(10);

att number(10);

 begin

 roll:=&roll;

 select attendance into att from stud1 where

roll_no=roll; if att<75 then

 dbms_output.put_line(roll||'is detained');

 update stud1 set status='D' where roll_no=roll;

 else

 dbms_output.put_line(roll||'is not detained');

 update stud1 set status='ND' where roll_no=roll;

 end if;

exception

when no_data_found then

dbms_output.put_line(roll||'not found');

end;

/

Enter value for roll: 102

old 5: roll:=&roll;

new 5: roll:=102;

102is detained

PL/SQL procedure successfully completed.

SQL> /

Enter value for roll: 101

old 5: roll:=&roll;

new 5: roll:=101;

101is not detained

Department of Electronics & Telecommunication Engineering - DBMS

46

PL/SQL procedure successfully completed.

SQL> /

Enter value for roll: 103

old 5: roll:=&roll;

new 5: roll:=103;

103is not detained

PL/SQL procedure successfully completed.

SQL> /

Enter value for roll: 104

old 5: roll:=&roll;

new 5: roll:=104;

104is detained

PL/SQL procedure successfully completed.

SQL> /

Enter value for roll: 105

old 5: roll:=&roll;

new 5: roll:=105;

105is detained

PL/SQL procedure successfully completed.

SQL> select * from stud1;

ROLL_NO ATTENDANCE STATUS

------------- ------------ - -------

101 80 ND

102 65 D

103 92 ND

Department of Electronics & Telecommunication Engineering - DBMS

47

104 55 D

CONCLUSION:

Thus we successfully implemented procedures.

Department of Electronics & Telecommunication Engineering - DBMS

48

Dr. D. Y. Patil Institute of Technology, Pimpri, Pune

Department of Electronics & Telecommunication Engineering

Academic Year 2022-23 - Semester 7

TE

Subject – DBMS

EXPERIMENT NO.-7

TITLE:

To Study of all types of Cursor (All types: Implicit, Explicit, Cursor FOR Loop, Parameterized

Cursor)

AIM:

To Study of all types of Cursor (All types: Implicit, Explicit, Cursor FOR Loop, Parameterized

Cursor)

INPUT: New roll calls and old roll calls

THEORY:

Oracle creates a memory area, known as the context area, for processing an SQL statement, which

contains all the information needed for processing the statement; for example, the number of rows

processed, etc. A cursor is a pointer to this context area. PL/SQL controls the context area through

a cursor. A cursor holds the rows (one or more) returned by a SQL statement. The set of rows the

cursor holds is referred to as the active set.

You can name a cursor so that it could be referred to in a program to fetch and process the rows

returned by the SQL statement, one at a time. There are two types of cursors −

• Implicit cursors

• Explicit cursors

Implicit Cursors

Implicit cursors are automatically created by Oracle whenever an SQL statement is executed, when

there is no explicit cursor for the statement. Programmers cannot control the implicit cursors and the

information in it.

Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor is

associated with this statement. For INSERT operations, the cursor holds the data that needs to be

inserted. For UPDATE and DELETE operations, the cursor identifies the rows that would be

affected.

In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor, which always has

attributes such as %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT. The SQL

cursor has additional attributes, %BULK_ROWCOUNT and %BULK_EXCEPTIONS, designed

for use with the FORALL statement.

Department of Electronics & Telecommunication Engineering - DBMS

49

%FOUND

Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one or more rows or a

SELECT INTO statement returned one or more rows. Otherwise, it returns FALSE.

%NOTFOUND

The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE, or DELETE

statement affected no rows, or a SELECT INTO statement returned no rows. Otherwise, it returns

FALSE.

%ISOPEN

Always returns FALSE for implicit cursors, because Oracle closes the SQL cursor automatically

after executing its associated SQL statement.

%ROWCOUNT

Returns the number of rows affected by an INSERT, UPDATE, or DELETE statement, or returned

by a SELECT INTO statement.

Explicit Cursors

Explicit cursors are programmer-defined cursors for gaining more control over the context area.

An explicit cursor should be defined in the declaration section of the PL/SQL Block. It is created on

a SELECT Statement which returns more than one row.

The syntax for creating an explicit cursor is −

CURSOR cursor_name IS select_statement;

Working with an explicit cursor includes the following steps −

• Declaring the cursor for initializing the memory

• Opening the cursor for allocating the memory

• Fetching the cursor for retrieving the data

• Closing the cursor to release the allocated memory

Declaring the Cursor

Declaring the cursor defines the cursor with a name and the associated SELECT statement. For

example −

CURSOR c_customers IS

 SELECT id, name, address FROM customers;

Opening the Cursor

Opening the cursor allocates the memory for the cursor and makes it ready for fetching the rows

returned by the SQL statement into it. For example, we will open the above defined cursor as

follows −

OPEN c_customers;

Fetching the Cursor

Department of Electronics & Telecommunication Engineering - DBMS

50

Fetching the cursor involves accessing one row at a time. For example, we will fetch rows from the

above-opened cursor as follows −

FETCH c_customers INTO c_id, c_name, c_addr;

Closing the Cursor

Closing the cursor means releasing the allocated memory. For example, we will close the above-

opened cursor as follows −

CLOSE c_customers;

To handle a result set inside a stored procedure, you use a cursor. A cursor allows you to iterate a

set of rows returned by a query and process each row individually.

MySQL cursor is read-only, non-scrollable and asensitive.

• Read-only: you cannot update data in the underlying table through the cursor.

• Non-scrollable: you can only fetch rows in the order determined by the SELECT statement.

You cannot fetch rows in the reversed order. In addition, you cannot skip rows or jump to a

specific row in the result set.

• Asensitive: there are two kinds of cursors: asensitive cursor and insensitive cursor. An

asensitive cursor points to the actual data, whereas an insensitive cursor uses a temporary

copy of the data. An asensitive cursor performs faster than an insensitive cursor because it

does not have to make a temporary copy of data. However, any change that made to the data

from other connections will affect the data that is being used by an asensitive cursor,

therefore, it is safer if you do not update the data that is being used by an asensitive cursor.

MySQL cursor is asensitive.

Problem Statement :

Cursors: (All types: Implicit, Explicit, Cursor FOR Loop, Parameterized Cursor)

Write a PL/SQL block of code using parameterized Cursor, that will merge the data available in the

newly created table N_RollCall with the data available in the table O_RollCall. If the data in the

first table already exist in the second table then that data should be skipped.

Solution in MySQL:

Steps are:

1) Create new_roll call and old_roll call tables

2) Insert records in both tables with few records duplication

3) create procedure and use cursor to merge above two tables to finalize roll list without

duplication.

https://www.mysqltutorial.org/mysql-stored-procedure-tutorial.aspx
https://www.mysqltutorial.org/stored-procedures-loop.aspx
https://www.mysqltutorial.org/mysql-select-statement-query-data.aspx

Department of Electronics & Telecommunication Engineering - DBMS

51

Assignment code:

mysql>create table new_roll(roll int,name varchar(10));

Query OK, 0 rows affected (0.29 sec)

mysql> create table old_roll(roll int,name varchar(10));

Query OK, 0 rows affected (0.28 sec)

mysql> insert into new_roll values(2,'b')$

Query OK, 1 row affected (0.05 sec)

mysql> insert into old_roll values(4,'d')$

Query OK, 1 row affected (0.05 sec)

mysql> insert into old_roll values(3,'bcd')$

Query OK, 1 row affected (0.04 sec)

mysql> insert into old_roll values(1,'bc')$

Query OK, 1 row affected (0.04 sec)

mysql> insert into old_roll values(5,'bch')$

Query OK, 1 row affected (0.04 sec)

mysql> insert into new_roll values(5,'bch')$

Query OK, 1 row affected (0.05 sec)

mysql> insert into new_roll values(1,'bc')$

Query OK, 1 row affected (0.04 sec)

mysql> select * from new_roll$

+------+------+

| roll | name |

+------+------+

| 2 | b |

| 4 | d |

| 5 | bch |

| 1 | bc |

+------+------+

4 rows in set (0.00 sec)

mysql> select * from old_roll$

+------+------+

| roll | name |

+------+------+

| 2 | b |

| 4 | d |

| 3 | bcd |

| 1 | bc |

| 5 | bch |

+------+------+

5 rows in set (0.00 sec)

delimiter $

create procedure roll_list()

begin

declare oldrollnumber int;

declare oldname varchar(10);

declare newrollnumber int;

Department of Electronics & Telecommunication Engineering - DBMS

52

declare newname varchar(10);

declare done int default false;

declare c1 cursor for select roll,name from old_roll;

declare c2 cursor for select roll,name from new_roll;

declare continue handler for not found set done=true;

open c1;

loop1:loop

fetch c1 into oldrollnumber,oldname;

if done then

leave loop1;

end if;

open c2;

loop2:loop

fetch c2 into newrollnumber,newname;

if done then

insert into new_roll values(oldrollnumber,oldname);

set done=false;

close c2;

leave loop2;

end if;

if oldrollnumber=newrollnumber then

leave loop2;

end if;

end loop;

end loop;

close c1;

end $

mysql> call roll_list()$

Query OK, 1 row affected (0.04 sec)

mysql> select * from new_roll$

+------+------+

| roll | name |

+------+------+

| 2 | b |

| 4 | d |

| 5 | bch |

| 1 | bc |

| 3 | bcd |

+------+------+

5 rows in set (0.01 sec)

Problem Statement 2: The bank manager has decided to activate all those accounts which were

previously marked as inactive for performing no transaction in last 365 days. Write a PL/SQ block

(using implicit cursor) to update the status of account, display an approximate message based on the

no. of rows affected by the update. (Use of %FOUND, %NOTFOUND, %ROWCOUNT)

Department of Electronics & Telecommunication Engineering - DBMS

53

Solution in Oracle:

Declare

Rows_affe number(10);

Begin

update bankcursor set status='active'where

status='inactive'; Rows_affe:=(SQL%rowcount);

dbms_output.put_line(Rows_affe||' rows are

affected...');

END;

Solution :

SQL> create table bankcursor(acc_no number(10),status varchar(10));

Table created.

SQL> select * from bankcursor;

 ACC_NO STATUS

 ---------- ----------

101 active

101 inactive

102 inactive

103 active

104 inactive

SQL>

Declare

Rows_affe number(10);

Begin

update bankcursor set status='active'where status='inactive';

Rows_affe:=(SQL%rowcount);

dbms_output.put_line(Rows_affe||' rows are affected...');

END;

/

3 rows are affected...

PL/SQL procedure successfully completed.

SQL> select * from bankcursor;

 ACC_NO STATUS

 ---------- ----------

101 active

102 active

103 active

104 active

105 active

Department of Electronics & Telecommunication Engineering - DBMS

54

Problem Statement 3: Organization has decided to increase the salary of employees by 10% of

existing salary, who are having salary less than average salary of organization, Whenever such

salary updates takes place, a record for the same is maintained in the increment_salary table.

EMP (E_no , Salary)

increment_salary(E_no ,

Salary) code:

Solution in Oracle:

Declare

Cursor crsr_sal is select e_no,salary from emp2 where salary<(select avg(salary) from emp2);

me_no emp2.e_no%type;

msalary emp2.salary%type;

Begin

open crsr_sal;

if crsr_sal%isopen then

loop

fetch crsr_sal into me_no,msalary;

exit when crsr_sal%notfound;

if crsr_sal%found then

update emp2 set salary=salary+(salary*0.1) where

e_no=me_no; select salary into msalary from emp2 where

e_no=me_no; insert into increament_t values(me_no,msalary);

end if;

end loop;

end if;

end;

SQL> create table emp2(e_no number(10),salary number(10));

Table created.

SQL> select * from emp2;

 E_NO SALARY

 ---------- ----------

101 1000

101 2000

102 113

103 4000

Department of Electronics & Telecommunication Engineering – DBMS

 55

SQL> create table increament_t(eno number(10),sal number(10));

Table created.

SQL>

Declare

Cursor crsr_sal is select e_no,salary from emp2 where salary<(select

avg(salary) from emp2);

me_no emp2.e_no%type;

msalary emp2.salary%type;

Begin

open crsr_sal;

if crsr_sal%isopen then

loop

fetch crsr_sal into me_no,msalary;

exit when crsr_sal%notfound;

if crsr_sal%found then

update emp2 set salary=salary+(salary*0.1) where e_no=me_no;

14 select salary into msalary from emp2 where e_no=me_no;

insert into increament_t values(me_no,msalary);

end if;

end loop;

end if;

end;

/

PL/SQL procedure successfully completed.

SQL> select * from emp2;

 E_NO SALARY

 ---------- ----------

101 1100

102 2000

103 113

104 4000

SQL> select * from increament_t;

 ENO SAL

 ---------- ----------

• 1100

 103 113

CONCLUSION:

Thus we successfully implemented procedures.

Department of Electronics & Telecommunication Engineering – DBMS

 56

Dr. D. Y. Patil Institute of Technology, Pimpri, Pune

Department of Electronics & Telecommunication Engineering

Academic Year 2022-23 - Semester 7

TE

Subject – DBMS

EXPERIMENT NO.-8

TITLE:

To Study of PL/SQL Stored Procedure and Stored Function.

AIM:

To Study of PL/SQL Stored Procedure and Stored Function.

INPUT: Students details and marks

THEORY:

Procedure:

• A subprogram is a program unit/module that performs a particular task. These subprograms

are combined to form larger programs. This is basically called the 'Modular design'. A

subprogram can be invoked by another subprogram or program which is called the calling

program.

• A subprogram can be created −

• At the schema level

• Inside a package

• Inside a PL/SQL block

• At the schema level, subprogram is a standalone subprogram. It is created with the

CREATE PROCEDURE or the CREATE FUNCTION statement. It is stored in the database

and can be deleted with the DROP PROCEDURE or DROP FUNCTION statement.

• A subprogram created inside a package is a packaged subprogram. It is stored in the

database and can be deleted only when the package is deleted with the DROP PACKAGE

statement. We will discuss packages in the chapter 'PL/SQL - Packages'.

• PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of

parameters. PL/SQL provides two kinds of subprograms −

• Functions − These subprograms return a single value; mainly used to compute and return a

value.

• Procedures − These subprograms do not return a value directly; mainly used to perform an

action.

• This chapter is going to cover important aspects of a PL/SQL procedure. We will discuss

PL/SQL function in the next chapter.

•

Department of Electronics & Telecommunication Engineering – DBMS

 57

Creating a Function:

A standalone function is created using the CREATE FUNCTION statement. The simplified syntax

for the CREATE OR REPLACE PROCEDURE statement is as follows −

CREATE [OR REPLACE] FUNCTION function_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

RETURN return_datatype

{IS | AS}

BEGIN

 < function_body >

END [function_name];

Where,

• function-name specifies the name of the function.

• [OR REPLACE] option allows the modification of an existing function.

• The optional parameter list contains name, mode and types of the parameters. IN represents

the value that will be passed from outside and OUT represents the parameter that will be

used to return a value outside of the procedure.

• The function must contain a return statement.

• The RETURN clause specifies the data type you are going to return from the function.

• function-body contains the executable part.

• The AS keyword is used instead of the IS keyword for creating a standalone function.

Calling a Function

While creating a function, you give a definition of what the function has to do. To use a function,

you will have to call that function to perform the defined task. When a program calls a function, the

program control is transferred to the called function.

A called function performs the defined task and when its return statement is executed or when the

last end statement is reached, it returns the program control back to the main program.

To call a function, you simply need to pass the required parameters along with the function name

and if the function returns a value, then you can store the returned value.

DECLARE

 c number(2);

BEGIN

 c := totalCustomers();

 dbms_output.put_line('Total no. of Customers: ' || c);

END;

/

Department of Electronics & Telecommunication Engineering – DBMS

 58

Problem Statement 1: PL/SQL Stored Procedure and Stored Function.

Write a Stored Procedure namely proc_Grade for the categorization of student. If marks scored by

students in examination is <=1500 and marks>=990 then student will be placed in distinction

category if marks scored are between 989 and900 category is first class, if marks 899 and 825

category is Higher Second Class

Write a PL/SQL block for using procedure created with above requirement.

Stud_Marks(name, total_marks) Result(Roll,Name, Class)

Solution in MySQL:

Steps:

1) create stud_marks and result table with primary and foreign keys

2)insert values in stud_marks

3)write and execute PL/SQL procedure for inserting grades in result table

Assignment is as follows:

mysql> desc stud_marks;

+-------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+-------------+------+-----+---------+-------+

| name | varchar(20) | NO | PRI | NULL | |

| total_marks | int(11) | YES | | NULL | |

+-------------+-------------+------+-----+---------+-------+

2 rows in set (0.01 sec)

mysql> desc result;

+-------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+-------------+------+-----+---------+-------+

| roll | int(11) | YES | | NULL | |

| class | varchar(10) | YES | | NULL | |

| name | varchar(20) | YES | MUL | NULL | |

+-------+-------------+------+-----+---------+-------+

3 rows in set (0.00 sec)

Department of Electronics & Telecommunication Engineering – DBMS

 59

mysql> insert into stud_marks values('abhijit',1020)$

Query OK, 1 row affected (0.15 sec)

mysql> insert into stud_marks values('anand',979)$

Query OK, 1 row affected (0.04 sec)

mysql> insert into stud_marks values('vijay',864)$

Query OK, 1 row affected (0.04 sec)

mysql> insert into stud_marks values('vikas',755)$

Query OK, 1 row affected (0.03 sec)

Create procedure proc_grade()

begin

declare done int default false;

declare roll int;

declare totmarks int;

declare class varchar(10);

declare name1 varchar(20);

declare c1 cursor for select name,total_marks from stud_marks;

declare continue handler for not found set done=true;

open c1;

set roll=1;

readloop:loop

fetch c1 into name1,totmarks;

if done then

leave readloop;

end if;

if totmarks<=1500 and totmarks>=990 then

insert into result values(roll,'dist',name1);

elseif totmarks<=989 and totmarks>=900 then

insert into result values(roll,'first',name1);

elseif totmarks<=899 and totmarks>=825 then

insert into result values(roll,'HSC',name1);

Department of Electronics & Telecommunication Engineering – DBMS

 60

else

insert into result values(roll,'poor',name1);

end if;

set roll=roll+1;

end loop;

end $

mysql> call proc_grade()$

Query OK, 0 rows affected (0.38 sec)

mysql> select * from result$

+------+-------+---------+

| roll | class | name |

+------+-------+---------+

| 1 | dist | abhijit |

| 2 | first | anand |

| 3 | HSC | vijay |

| 4 | poor | vikas |

+------+-------+---------+

4 rows in set (0.00 sec)

Problem Statement 2. Write a PL/SQL stored Procedure for following requirements and call the

procedure in appropriate PL/SQL block.

1. Borrower(Rollin, Name, DateofIssue, NameofBook, Status)

2. Fine(Roll_no,Date,Amt)

• Accept roll_no & name of book from user.

• Check the number of days (from date of issue), if days are between 15 to 30 then fine

amount will be Rs 5per day.

• If no. of days>30, per day fine will be Rs 50 per day & for days less than 30, Rs. 5 per day.

• After submitting the book, status will change from I to R.

• If condition of fine is true, then details will be stored into fine table

Solution :

SQL>create or replace function cal_fine(diffdate number) return number is

begin

Department of Electronics & Telecommunication Engineering – DBMS

 61

if diffdate<15 then

return 0;

elsif diffdate<30 then

return (5*(diffdate-15));

else

return (50*(diffdate-30)+5*(15));end if;

end;

/

SQL> Declare

troll_no varchar(5);

tdays number(5);

tdate date;

diffdate number(5);

begin

troll_no := '&troll_no';

select to_date(sysdate,'DD-MM-YY')"Now" into tdate from dual;

select ((select to_date(sysdate,'DD-MM-YY')"Now" from dual)-dateofissue) into diffdate

from Borrower

where roll_no=troll_no;

insert into Fine values(troll_no,tdate,cal_fine(diffdate));

update borrower set status = 'R' where roll_no=troll_no;

End;

/

create function cal_fss(diffdate number) return number is

begin

if diffdate<15 then

return 0;

elsif diffdate<30 then

return (5*(diffdate-15));

else

return (50*(diffdate-30)+5*(15));

end if;

Department of Electronics & Telecommunication Engineering – DBMS

 62

end ;

create table borrower(rollno number primary key, name varchar2(20), dateofissue date,

nameofbook varchar2(20), status varchar2(20));

create table fine(rollno number, foreign key(rollno) references borrower(rollno), returndate

date, amount number);

insert into borrower values(1,'abc',date '2021-06-01','SEPM','I');

insert into borrower values(2,'xyz',date '2021-05-01','OOP','I');

insert into borrower values(3,'pqr',date '2021-06-15','DBMS','I');

insert into borrower values(4,'def',date '2021-06-30','DSA','I');

insert into borrower values(5,'lmn',date '2021-07-05','ADS','I');

create procedure calc_fine_lib3(roll number) is

troll_no number(5);

tdays number(5);

tdate date;

diffdate number(5);

begin

troll_no := roll;

select to_date(sysdate,'DD-MM-YY')"Now" into tdate from dual;

select ((select to_date(sysdate,'DD-MM-YY')"Now" from dual)-dateofissue) into diffdate from

Borrower where rollno=troll_no;

insert into Fine values(troll_no,tdate,cal_fss(diffdate));

update borrower set status = 'R' where rollno=troll_no;

End;

CONCLUSION:

Thus we have successfully implemented PL/SQL stored procedures.

Department of Electronics & Telecommunication Engineering – DBMS

 63

Dr. D. Y. Patil Institute of Technology, Pimpri, Pune

Department of Electronics & Telecommunication Engineering

Academic Year 2022-23 - Semester 7

TE

Subject – DBMS

EXPERIMENT NO.-9

TITLE:

To Study all types of Database Trigger (All Types: Row level and Statement level triggers, Before

and After Triggers).

AIM:

To Study all types of Database Trigger (All Types: Row level and Statement level triggers, Before

and After Triggers).

INPUT: Student library books information

THEORY:

• Triggers are stored programs, which are automatically executed or fired when some events

occur. Triggers are, in fact, written to be executed in response to any of the following events

−

• A database manipulation (DML) statement (DELETE, INSERT, or UPDATE)

• A database definition (DDL) statement (CREATE, ALTER, or DROP).

• A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or

SHUTDOWN).

• Triggers can be defined on the table, view, schema, or database with which the event is

associated.

Benefits of Triggers

• Triggers can be written for the following purposes −

• Generating some derived column values automatically

• Enforcing referential integrity

• Event logging and storing information on table access

• Auditing

• Synchronous replication of tables

• Imposing security authorizations

• Preventing invalid transactions

Creating Triggers

• The syntax for creating a trigger is −

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

Department of Electronics & Telecommunication Engineering – DBMS

 64

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

 Declaration-statements

BEGIN

 Executable-statements

EXCEPTION

 Exception-handling-statements

END;

Where,

• CREATE [OR REPLACE] TRIGGER trigger_name − Creates or replaces an existing

trigger with the trigger_name.

• {BEFORE | AFTER | INSTEAD OF} − This specifies when the trigger will be executed.

The INSTEAD OF clause is used for creating trigger on a view.

• {INSERT [OR] | UPDATE [OR] | DELETE} − This specifies the DML operation.

• [OF col_name] − This specifies the column name that will be updated.

• [ON table_name] − This specifies the name of the table associated with the trigger.

• [REFERENCING OLD AS o NEW AS n] − This allows you to refer new and old values for

various DML statements, such as INSERT, UPDATE, and DELETE.

• [FOR EACH ROW] − This specifies a row-level trigger, i.e., the trigger will be executed for

each row being affected. Otherwise the trigger will execute just once when the SQL

statement is executed, which is called a table level trigger.

• WHEN (condition) − This provides a condition for rows for which the trigger would fire.

This clause is valid only for row-level triggers.

Problem Statement:

Database Trigger (All Types: Row level and Statement level triggers, Before and After

Triggers).

Write a database trigger on Library table. The System should keep track of the records that are

being updated or deleted. The old value of updated or deleted records should be added in

Library_Audit table.

Solution in MySQL:

Steps are:

1) Create lib_audit and lib_audit2 tables

2) Insert records in lib_audit

3) create trigger for before update and before delete on lib_audit.

//Trigger for delete on lib_audit

Department of Electronics & Telecommunication Engineering – DBMS

 65

mysql> create table lib_audit(bookid int,bookname varchar(20),price int)$

Query OK, 0 rows affected (0.58 sec)

mysql> create table lib_audit2(bookid int,bookname varchar(20),price int)$

Query OK, 0 rows affected (0.36 sec)

mysql> Create trigger before_delete_lib_audit before delete on lib_audit for each row

begin

insert into lib_audit2 values(old.bookid,old.bookname,old.price);

end$

Query OK, 0 rows affected (0.13 sec)

mysql> insert into lib_audit values(1,'ab',100)$

Query OK, 1 row affected (0.05 sec)

mysql> insert into lib_audit values(2,'cd',10)$

Query OK, 1 row affected (0.05 sec)

mysql> insert into lib_audit values(3,'dg',101)$

Query OK, 1 row affected (0.05 sec)

mysql> select * from lib_audit$

+--------+----------+-------+

| bookid | bookname | price |

+--------+----------+-------+

| 1 | ab | 100 |

| 2 | cd | 10 |

| 3 | dg | 101 |

+--------+----------+-------+

3 rows in set (0.00 sec)

mysql> select * from lib_audit2$

Empty set (0.00 sec)

mysql> delete from lib_audit where bookid=1$

Query OK, 1 row affected (0.14 sec)

mysql> select * from lib_audit$

+--------+----------+-------+

| bookid | bookname | price |

+--------+----------+-------+

| 2 | cd | 10 |

| 3 | dg | 101 |

+--------+----------+-------+

2 rows in set (0.00 sec)

mysql> select * from lib_audit2$

+--------+----------+-------+

| bookid | bookname | price |

+--------+----------+-------+

Department of Electronics & Telecommunication Engineering – DBMS

 66

| 1 | ab | 100 |

+--------+----------+-------+

1 row in set (0.00 sec)

mysql> delete from lib_audit where bookid=3$

Query OK, 1 row affected (0.04 sec)

mysql> select * from lib_audit2$

+--------+----------+-------+

| bookid | bookname | price |

+--------+----------+-------+

| 1 | ab | 100 |

| 3 | dg | 101 |

+--------+----------+-------+

2 rows in set (0.00 sec)

//Trigger for update on lib_audit

mysql> Create trigger before_update_lib_audit before update on lib_audit for each row

begin

insert into lib_audit2 values(old.bookid,old.bookname,old.price);

end$

mysql> update lib_audit set bookname='xy' where bookid=2$

Query OK, 1 row affected (0.07 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> select * from lib_audit$

+--------+----------+-------+

| bookid | bookname | price |

+--------+----------+-------+

| 2 | xy | 10 |

+--------+----------+-------+

1 row in set (0.00 sec)

mysql> select * from lib_audit2$

+--------+----------+-------+

| bookid | bookname | price |

+--------+----------+-------+

| 1 | ab | 100 |

| 3 | dg | 101 |

| 2 | cd | 10 |

+--------+----------+-------+

3 rows in set (0.00 sec)

Problem Statement : Write a update, delete trigger on client mstr table. The System should keep

track of the records that ARE BEING updated or deleted. The old value of updated or deleted

records should be added in audit trade table. (separate implementation using both row and statement

triggers).

Department of Electronics & Telecommunication Engineering – DBMS

 67

Solution in Oracle:

Row trigger:

SQL> create or replace trigger t1 after update or delete on client_master 2

for each row

declare

op varchar(10);

begin

if updating then

op:='update';

end if;

if deleting then

op:='Delete'; end if;

into stat values(:old.id,op);

insert into audit_trade values(:old.id,:old.cname);

dbms_output.put_line('Details updated to stat and audit_trade table');

end;
/ Trigger created.

Statement Trigger:

SQL> create or replace trigger t1 after update or delete on client_master 2

for each row

declare

op varchar(10);

begin

if updating then

op:='update';

end if;

if deleting then

op:='Delete'; end if;

into stat values('',op);

insert into audit_trade values(:old.id,:old.cname);

dbms_output.put_line('Details updated to stat and audit_trade table'); end;

/ Trigger created.

CONCLUSION:

Thus we have successfully implemented trigger.

